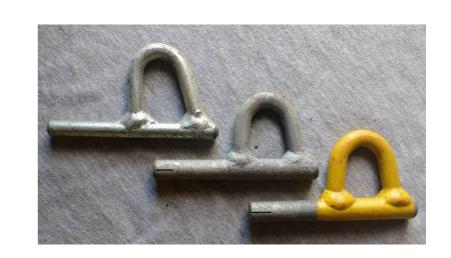
Proteções Fixas

Histórico

Grampos dos anos 40 e 50 longos e normalmente quadrados

Grampos dos anos 60 mais curtos e já sextavados


Grampos anos 70 redondos e mais profundos Grampo "perfeito"

Bonier

1992 a 1995 grampos Bonier

1993 Chapas Orpec

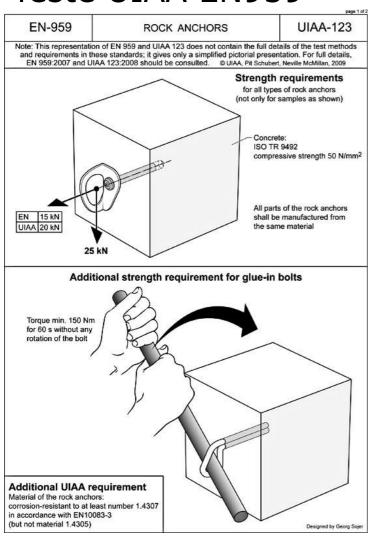
Bonier

1998 – Chapeleta dupla

2001 – Chapeleta simples

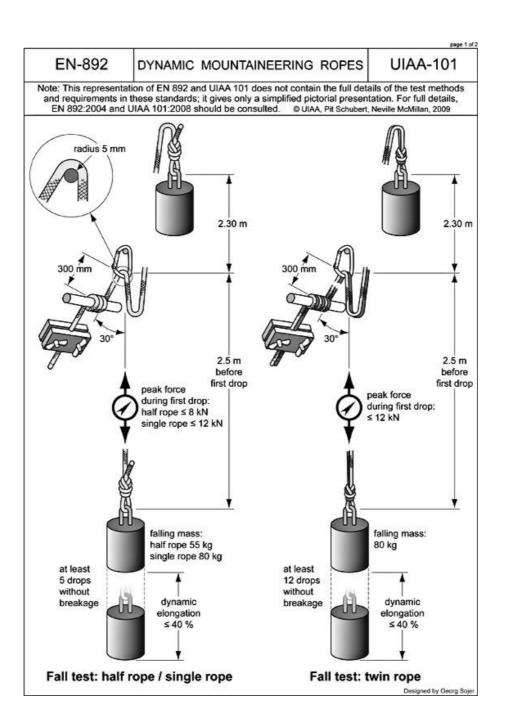
Bonier

2012 – Ancopro Ancoragem Profissiona


2015 – Chapeleta PinGo

Requisitos de Resistência

Teste UIAA EN959



Resistências mínimas

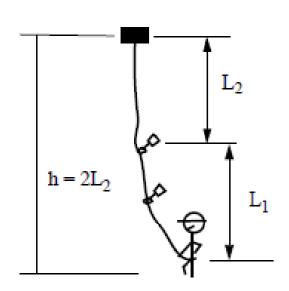
Limites recomendados	UIAA (mínimos)
Ancoragens	25 kN
Mosquetões	20 kN
Fitas	22 kN
Harneses	15 kN

Requisitos das Cordas Dinâmicas

Força de Impacto da Corda

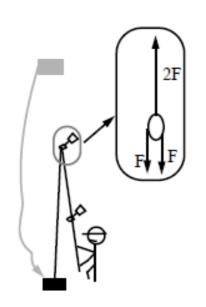
Equação da força de impacto – Site Beal

$$F = mg + mg \sqrt{1 + \frac{2fk}{mg}}$$


F = força de impacto em Newtons
 M = massa em kg
 g = aceleração da gravidade = 9,81 ms-2
 K = constante elástica da corda
 (Módulo de Young X Seção da corda)
 f = fator de queda

Valor de K em função da força de impacto máxima da corda

F = 7,0 kN -> K = 13700 F = 7,5 kN -> K = 16000 F = 8,0 kN -> K = 18500 F = 8,5 kN -> K = 21200 F = 9,0 kN -> K = 24100 F = 9,5 kN -> K = 27100 F = 10,0 kN -> K = 30300


Análise de uma queda guiando

$$\frac{F}{P} = 1 + \sqrt{1 + \frac{2 \cdot k \cdot h}{P}}$$

$$k = \frac{M}{L} \qquad \qquad L = L_1 + L_2$$

$$\frac{F}{P} = 1 + \sqrt{1 + \frac{2hM}{P(L_1 + L_2)}}$$

Caso 1

M = 26 kN/m/m

P = 80 kg .9,81 = 784,8 N

L1 = 10 m

L2 = 30 m

h = 60 m

L = 40 m

F = 10,01 . P = 7,86 kN

2F = 15,72 kN

Caso 2

M = 26 kN/m/m

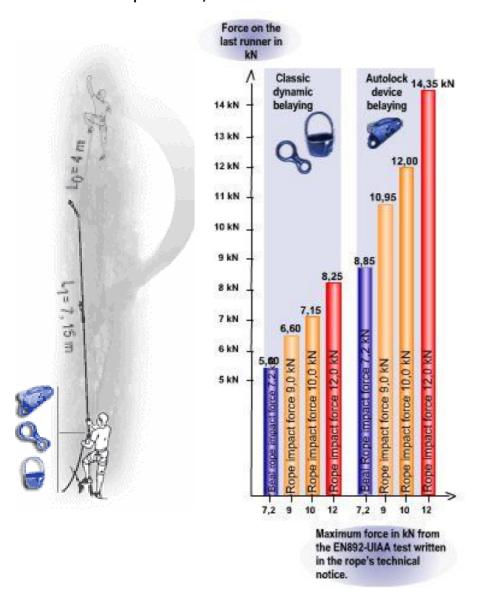
P = 80 kg .9,81 = 784,8 N

L1 = 30 m

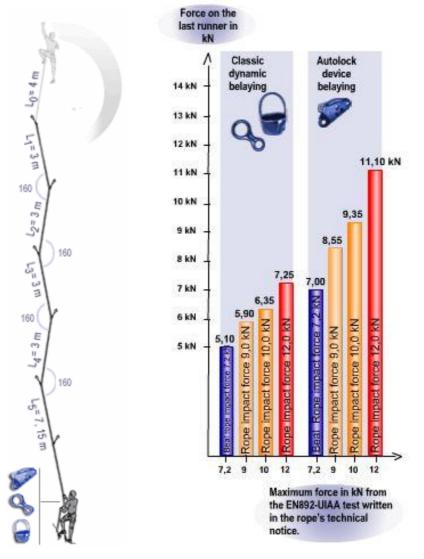
L2 = 10 m

h = 20 m

L = 40 m


F = 6.84 . P = 5.37 kN

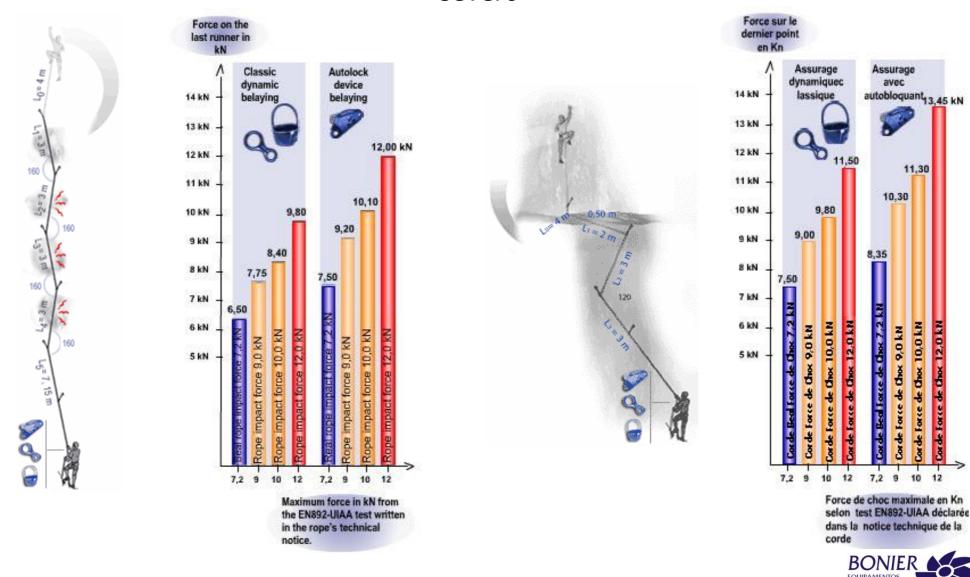
2F = 10,74 kN



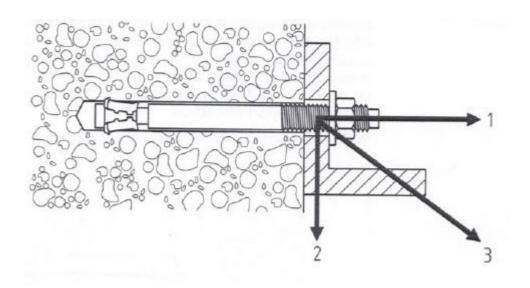
Força na última costura em função da corda e do equipamento de segurança

Fator de queda 0,71 sem desvios sem atrito

Fator de queda 0,34 com desvios e sem atrito



Força na última costura em função da corda e do equipamento de segurança


Fator de queda 0,34 com atrito Fator de queda 0,75 com atrito severo

11,30

Cargas

- 1 Força axial (tração)
- 2 Força Radial (cisalhamento)
- 3 Força resultante (tração + cisalhamento)

Materiais para Ancoragens

Aço Carbono (galvanizado a fogo e eletrolítico)

- Baixo custo
- Média resistência mecânica
- Baixa resistência a corrosão (mesmo com tratamentos)

Aço inoxidável (austeníticos, duplex, HCR)

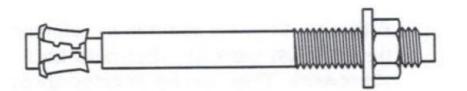
- Boa relação custo / benefício
- Excelente resistência mecânica
- Alto alongamento (absorção de energia)
- Boa resistência a corrosão (problemas com corrosão galvânica e SCC em aços austeníticos)
- Inerte no meio ambiente

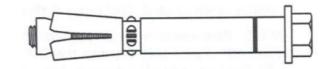
Titânio

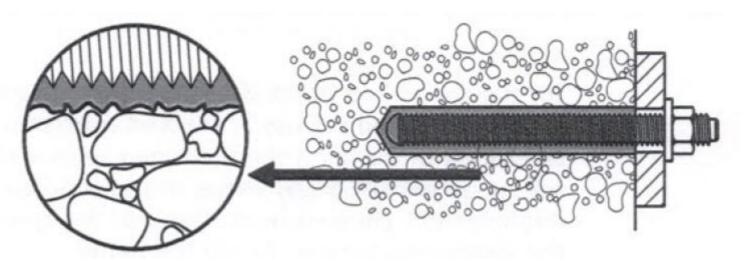
- Custo elevado
- Boa resistência mecânica
- Excelente resistência a corrosão

Comparação Materiais

Material	Aço carbono 1045	Aço inox 304L	Aço inox 316L	Duplex 2205	HCR 904L	Titânio Grau 2
Tensão de ruptura (Mpa)	565	564	584	550	490	390 - 540
Tensão de escoamento (Mpa)	310	210	235	415	220	250
Alongamento (%)	16	58	55	20	35	20
Dureza (HRb)	84	82	79	98	90	80
Valor por kg (R\$/kg)	5,00	17,00	25,00	125,00	180,00	500,00 (285,00)


NOTAS:


1 – Os preços são para chapas de #3mm


Tipos de Chumbadores

Mecânicos

Químicos

Chumbador Mecânico

A transferência da carga se dá devido à forma ou atrito.

Vantagens:

- Total capacidade de carga após a instalação;
- Diferentes níveis de proteção a corrosão;
- Tempo ilimitado de armazenamento.

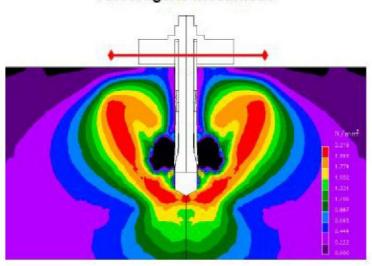
Desvantagens:

- Necessidade de afastamento maior entre furos e entre furo/borda;
- Em caso de furos ao ar livre está sujeitos a corrosão dentro do furo devido a entrada de água.

Chumbador Químico

Resultam da combinação de um componente químico com elemento metálico. Vantagens:

- Extraordinário desempenho (solução para qualquer nível de carga);
- Possibilidade de pequeno afastamento entre furos e furos e as bordas;
- Flexibilidade dos elementos a fixar (dimensões e resistência a corrosão);
- Furo completamente preenchido, impede a entrada de água ou umidade;
- Flexibilidade de aplicação em diferentes materiais de base.


Desvantagens:

- Impossibilidade de aplicação imediata de carga (cura mínima aprox 30 min);
- Tempo de armazenamento antes da aplicação limitado.

Tensões no Substrato

Ancoragens mecânicas

Ancoragens químicas

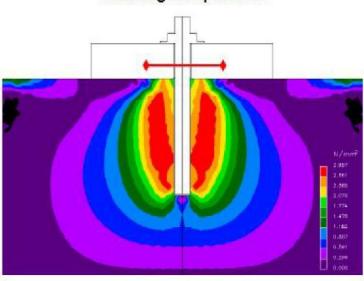


Tabela 2 - Requisitos de espaçamentos mínimos entre chumbadores e entre chumbadores e apoios ou chumbadores e bordas

Chumbadores de adesão química		Todos os demais chumbadores		
Espaçamento mínimo entre chumbadores ou entre apoios Distância mínima entre chumbador e borda ou entre chumbador e apoios		Espaçamento mínimo entre chumbadores ou entre apoios	Distância mínima entre chumbador e borda ou entre chumbador e apoios	
	Carg	as de tração		
2,0 h _{ef} 1,0 h _{ef}		4,0 h _{ef}	2,0 h _{ef}	
	Cargas o	de cisalhamento	5011000	
4,0 h _{ef} 2,0 h _{ef}		4,0 hef	2,0 h _{ef}	

Torque

Importância do Torque

Quando aplicado corretamente o torque garante a correta fixação do chumbador e da chapeleta fixada. A aplicação do torque trás também um efeito de redução da componente de cisalhamento devido ao atrito gerado entre a chapeleta e a rocha. Porém deve-se ter alguns cuidados:

Torque quando excessivo no chumbador pode (over torque):

- 1 espanar os fios de rosca do chumbador;
- 2 quebrar o chumbador;
- 3 trincar o chumbador, fazendo-o falhar mais tarde, pondo em risco vidas.

O torque quando insuficiente pode:

- 1 deixar cair o elemento fixado;
- 2 não "chumbar" e causar acidentes e danos ao patrimônio.

Norma

Normativa EN959: 2007 (UIAA 123)

Requisitos de segurança

Materiais – todas as partes devem ser fabricadas com o mesmo material

Desenho – espessura min 3mm, raios mín de 10mm em todas a curvas que estiverem a mais de 12mm da rocha, todas as aresta devem ter um raio de arredondamento min de 0,2mm ou biselado 0,2mm x 45°, deve ser possível passar pelo ponto de ancoragem uma barra de 15mm + uma de 11mm simultaneamente.

Chumbadores – químico profundidade mín 70 mm, mecânicos profundidade mín 5 X o diâmetro

Capacidade de carga – min 15 kN axial e min 25 kN radial

Norma

Ensaios

Bloco de concreto 50Mpa (min 200 x 200 x 200mm), granulometria máxima de 16mm

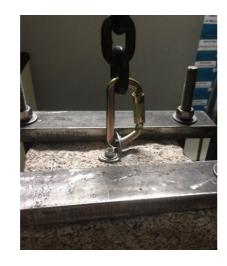
Velocidade de carregamento 35 mm/min (+/- 15 mm/min)

Carregar 10 ciclos em 10min - 8 (+/-0.25) kN e descarregar pelo menos até 0.5kN (Axial e Radial)

Após os 10 ciclos carregar até a ruptura e registrar esse valor

Mínimo de 15kN para o teste axial e 25kN para o teste radial

Marcação


As ancoragens deverão ter gravadas de maneira clara, indelével e duradoura as seguintes informações:

- a) Nome do fabricante
- b) Modelo ou nome do produto (caso o fabricante tenha mais de um modelo)

Resultados Ensaios Axiais

Amostra/ Especificação	Força Máxima (kN)	Deformação na Força Máxima (mm)	Aspecto após ensaio
S-51850 Chapeleta	8,05	15,38*	Não apresentou descontinuidade após 10 carregamentos.
Pingo	24,52	24,41	Deformação da chapeleta e do parafuso. Parabolt desprendeu da rocha.
S-51851 Chapeleta	8,05	16,05*	Não apresentou descontinuidade após 10 carregamentos.
Dupla	25,83	28,52	Ruptura do parafuso / parabolt.
S-51852 Chapeleta	8,06	19,16*	Não apresentou descontinuidade após 10 carregamentos.
Simples	25,43	26,42	Ruptura do parafuso / parabolt.
Especificação norma EN 959:2007	15,0 _{mínimo}	Não especificado	-

Resultados Ensaios Radiais

Amostra/ Especificação	Força Máxima (kN)	Deformação na Força Máxima (mm)	Aspecto após ensaio		
S-51853 Chapeleta	8,07	4,97**	Não apresentou descontinuidade após 10 carregamentos.		
Pingo	37,07	23,27	Ruptura da chapeleta.		
S-51854 Chapeleta	8,06	3,66**	Não apresentou descontinuidade após 10 carregamentos.		
Dupla	32,43	20,27	Cisalhamento do parafuso /parabolt.		
S-51855 Chapeleta	8,06	11,62**	Não apresentou descontinuidade após 10 carregamentos.		
Simples	34,34	38,24	Cisalhamento do parafuso /parabolt		
Especificação norma EN 959:2007	25,0 _{mínimo}	Não especificado	-		

Corrosão

Tipos de Corrosão:

- Oxidação
- Galvânica (bi-metálica)
- Corrosão Química
- Corrosão Sob Tensão (SCC stress cracking corrosion)
- Corrosão Localizada (Pitting)
- Corrosão Intersticial

BS 8539:2012 BRITISH STANDARD

Table 1 Anchor materials used to minimize the risk of corrosion

Application condition	Anchor materials for required duration ^{A), B)}					
	Short term	Medium term	Long term			
Dry internal	FE-Zn	FE-Zn	FE-Zn			
Internal humid, no chlorides, or acid condensates	FE-Zn	HDG +	SS A2 SS D2			
External – rural, urban, light industrial areas with light/modest pollution. Internal permanently damp	HDG +	HDG +	SS A2 SS D2			
External ^{C)} – industrial or coastal but not immersed or splash zone, see special applications	HDG +	SS A4 SS D4	SS A4 SS A5 SS D4 SS D6			
Special applications D)	Special alloys	of stainless steel				

A) Approximate duration:

- short term = ≤2 years;
- medium term = ≤10 years;
- long term = ≤50 years.

B) Materials:

FE-Zn = zinc-plated carbon steel with or without chromate passivation;

(Chromate passivation can prevent "white rust" of zinc caused by chemicals in packaging. Yellow chromate is being phased out in favour of "blue" – clear – passivation. Some manufacturers use the term "galvanized" for zinc electro-plated products.)

- HDG + = Hot dip galvanized carbon steel and other coating processes such sherardizing;
- stainless steel grades:
 - SS A2 = austenitic stainless steel grade A2 as defined in BS EN ISO 3506-1:2009, Table 1 suitable alloy 1.430 1 as defined in BS EN 10088-1:2005 (grade A2 will eventually stain);
 - SS A4 = austenitic stainless steel grade A4 suitable alloys 1.4401; 1.443 6 (grade A4 is unlikely to stain in normal use);
 - SS A5 = austenitic stainless steel grade A5 suitable alloy 1.4571;
 - SS D2 = duplex stainless steel grade D2 suitable alloys 1.4162; 1.4062; 1.4482 (a revision to include these materials in BS EN ISO 3506-1 and BS EN ISO 3506-2 is currently in process);
 - SS D4 = duplex stainless steel grade D4 suitable alloy 1.4362;
 - SS D6 = duplex stainless steel grade D6 suitable alloy 1.4462.
- special alloys of stainless steel = high corrosion-resistant stainless steels of the duplex type and austenitic steels with higher alloy content than A4 (sometimes referred to as grade C or HCR) – suitable alloys 1.452 9 and 1.456 5.
- External applications involve normal conditions with no exceptional pollutants.
- Special applications include: permanent or alternating immersion in sea water or the splash zone of marine installations, chloride atmospheres of swimming pools (especially those within roof spaces), atmospheres with high chemical pollution such as road tunnels and other road and rail applications where de-icing salts are used, desulfurization plants, and others.

Oxidação

Corrosão Galvânica (bi-metálica)

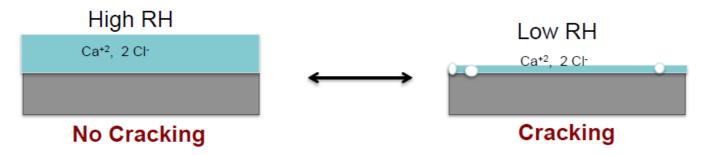
Galvanic effect on the rate of corrosion of anchors and fixtures in rural or urban areas

Fixture metal	Galvanic effect A)			
	HDG anchor	Stainless steel anchor B)		
Zinc-plated steel	0	F2		
Hot dip galvanized coated steel	0	F2		
Aluminium	A1	0		
Structural steel un-plated	0	F2		
Cast steel un-plated	0	F2		
Stainless steel austenitic and austenitic-ferritic	A2	0		

- A) The effect on the rate of corrosion refers to the possibility of additional bi-metallic corrosion occurring to the anchor or fixture metal where an aqueous electrolyte is present.
 - 0 = no effect on the rate of corrosion (does not mean no corrosion, simply no change to the rate of corrosion) of fixture or anchor;
 - F1 (A1) = moderate increase in corrosion of fixture (anchor);
 - F2 (A2) = heavy increase in rate of corrosion of fixture (anchor).
- B) Austenitic and austenitic-ferritic stainless steel, often referred to as "duplex".

Zinc-plated steel is not recommended as a material for anchors for use of any duration, even short-term, in conditions which might give rise to galvanic corrosion. Hot dip galvanized anchors will only offer short-term resistance in such conditions, and medium-term resistance when in contact with fixtures of a similar finish where there is no increase in the rate of corrosion.

Corrosão

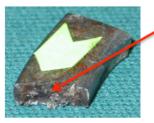

Corrosão Sob Tensão (SCC – stress cracking corrosion)

Fator	Condição Ambiental
Cloretos (água do mar)	Necessário mas não suficiente
Alta umidade	Ajuda a prevenir diluindo os filmes de cloritos
Temperaturas quentes	Normalmente abaixo dos 60C é considerado seguro menos em condições severas de corrosão
Água do solo acida	Muito agressiva se combinada com cloretos
Calcário dissolvido	Sais cloretos são muito mais agressivos como CaCl2 e MgCl2
Intervalos com baixa umidade	Torna os sais CaCl2 e MgCl2 extremamente corrosivos

Chloride Film SCC Tests Ambient Temperature

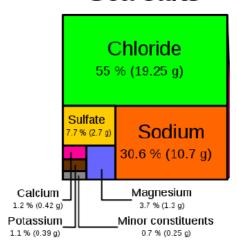
Shoji, 1989

- Tests conducted on U-bend specimens 304L, 316L containing salt deposits: NaCl, MgCl₂, CaCl₂, ZnCl₂
 - Tests designed for films of maximum chloride concentration
 - Test duration: 2 years, ambient temperature
- Cracking occurred with maximum concentrations for Mg, Ca, Zn chloride salts BUT NOT NaCl.


Saturated Chloride Films Importance of Humidity

Salt	Saturated concentration, wt% as CI	Relative Humidity required for saturated CI solutions (%)
NaCl NO FAILURE	16	75
MgCl ₂ FAILURE	27	33
CaCl ₂ FAILURE	29	31
ZnCl ₂ FAILURE	42	10

Low humidity required for Mg, Ca, Zn chloride salts to cause SCC on austenitic stainless steels.

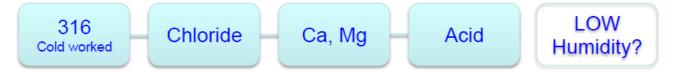

Analysis of Corrosion Product XPS/ESCA

Fe, Si, Cr, Ni, Cl, Na, Ca, S, O, Mg, Al detected in solid.

Cation Ratio	Sea Salt Ratio	Failed Hanger Ratio
Na / Ca	25.5 / 1	1 / 1
Na / Mg	8.3 / 1	1 / 6.4

Sea salts

Solids on hanger NOT consistent with sea salt exposure Very high levels of Mg, Ca



Conditions Necessary for Atmospheric TGSCC The Perfect Storm

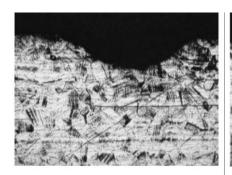
Indoor swimming pool roof collapse

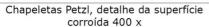
Thailand bolt failures

Estudo Preliminar no Brasil

Agosto 2014

- 3 chapeletas da Via "Ás de Espadas" Bonier 2007
- 3 Chapeletas face sul da "Pedra do Urubu" Simond (aprox. ano 98?)
- 1 Chapeleta face norte da "Pedra do Urubu" Petzl (aprox. ano 89?)


Análise Química

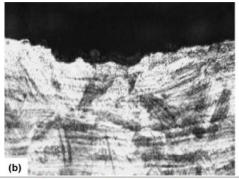

Composição especificada para o aço ASTM A 240 Tp 304 (% em peso).

O	Mn	Si	Cr	Ni	Р	s	Referência
0,070máx	2,00máx	0,75máx	17,5-	8,0 -	0,045máx	0,030máx	Tipo 304L
			19,5	10,5			_
0,052	0,99	0,661	18,5	8,65	<0,036	0,022	Petzl
0,038	0,86	0,589	19,02	8,66	<0,033	0,022	Simond
0,052	1,01	0,479	18,53	8,08	<0,034	0,021	Bonier

Micrografias



Chapeletas Petzl, detalhe da superfície corroída 800 x


Chapeletas Simond, detalhe da superfície corroída 400 x

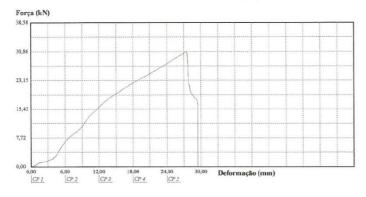
Chapeletas Simond, detalhe da superfície corroída 800 x

Chapeletas Bonier, detalhe da superfície corroída 400 x

Chapeletas Bonier, detalhe da superfície corroída 800 x

Ensaios

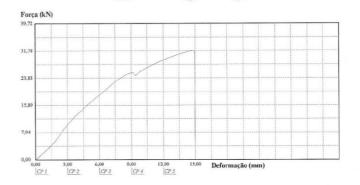
Chapeleta Bonier ensaiada, ruptura 30,87kN.



Chapeleta Simond ensaiada, ruptura 31,78kN.

SPECTROSCAN ENSAIO DE TRAÇÃO

Relatório de Ensaio


Máquina: Emic DL30000N	Célula: Trd 29 Extense	imetro: Trd 2 Dat	a: 30/07/2014	Hora: 15:06:00	Trabalho nº 1307
Programa: Tesc versão 1.13			Métod	de Ensaio. Traç	ão_sem det ruptura
Ident. Amostra: >>>>>>>>>>	******	Cliente: BONIER	Identif.: 41713	Material: CHA	PELETA BONIER
	Corpo de	Força Máx	Deformação		
	Prova	(kN)	(mm)		
	CP 1	30,87	27,4		
	Número CPs	1	1		
	Média	30,87	27,45		
	Desv.Padrão	*	*		
	Coef.Var.(%)	R	n		
	Mínimo	30,87	27,45		
	Máximo	30,87	27,45		

SPECTROSCAN ENSAIO DE TRAÇÃO

Relatório de Ensaio

Máquina: Emic DL30000N Programa: Tesc versão 1.13	Célula: Trd 29	Extensômetro: Trd 2	Data: 30/07/2014 Méto	Hora: 14:55:56 do de Ensaio: Traç	Trabalho nº 1306 ão_sem det ruptura	
Ident. Amostra: >>>>>>>>	>>>>>>>>	>>>>> Cliente: BONI	IER Identif.: 41712	Material: CHA	PELETA SIMOND	
	Corpo de Prova	Força M	Máx Deformaçã kN) (mm			
	CP 1		,78 14,	7		
	Número C Média		,78 14,7	1 2		
	Desv.Pad Coef.Var.		-	*		
	Mínimo Máximo	31	,78 14,7 ,78 14,7			

Aço inox é inerte no meio ambiente

Descargas Elétricas

"É impossível progredir sem mudança e aqueles que não mudam a sua mente não podem mudar nada" (George Bernard Shaw)

